If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+25t+5=0
a = -4.9; b = 25; c = +5;
Δ = b2-4ac
Δ = 252-4·(-4.9)·5
Δ = 723
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{723}}{2*-4.9}=\frac{-25-\sqrt{723}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{723}}{2*-4.9}=\frac{-25+\sqrt{723}}{-9.8} $
| -3(4c+3)+4(6c+1=43 | | 3(w-7)-8w=29 | | 2.8=4.8x-5.1x-2.6 | | 26=2(3x-9) | | 6x-7x=7-1 | | 4(3x+7)=-50+54 | | x^2-2x+6=2x+11= | | -4x+2(x+3)=-4 | | -1.9=x/0.5 | | 4.5-0.9y=2.7;2 | | 1/2(2x-8)(x+3)-42=0 | | 8(x-3)+5x=9(x-1)-3 | | 3x2-100=92 | | 3(x)/8-1=5/8 | | 15p^-22p-5=0 | | 3m-5+2m=12-7m-7 | | 8+4(x-3)+3x=24 | | 3x-6(x-22)=114 | | 1/7s+3=1/7-3 | | 2(11-k)+4k=32 | | 6(u-4)-2u=-28 | | 12+7a=-6 | | 2x+24=2x+36-4 | | 9u+8=5(u+8) | | 23=2(×+7)-5x | | -7x+14=-18 | | 4v-5=19 | | (7s+3)=(7s-3) | | -13=-3x+10 | | -5(x-6)=-7x+34 | | 5z+18z=184 | | w/3-11=23 |